
QLHH : A Hyper-heuristic with QLearning for the Flowshop
Permutation Problem

Mohamed Islem KARABERNOU, Adel BOULAOUAD
Sarah ABCHICHE, Mustapha Ayoub BELOUADAH

Akli YALAOUI ,Mohamed DJILANI

June 24, 2022

Abstract

Hard combinatorial optimization are problems that involves huge search space and
have been studied extensively by operational research. This paper propose a hyper-
heuristic based on reinforcment learning to decide the next heuristic to optimize for
the Flowshop Permutation Problem

Keywords: FSP, hyper-heuristic, optimization

1 Introduction
Many methods have been developed to solve FSP problem including exact meth-

ods like Branch and Bound. Such methods exhaustively explores the search space and
therefore guaranteeing the optimal solution. However trying every possible solution
is tramendously time consuming and the time complexity grows exponentionally with
the size of the instance.
To overcome the huge time complexity , another type of approached methods have
been developed , this type introduces a trade-off between the quality of the solution
and the time complexity. The first family of approached methodes are the Heuris-
tics, a type of algorithms that are designed to solve a problem in a faster and more
efficient fashion than exact methods by sacrificing optimality, accuracy, precision, or
completeness for speed, they can deliver good quality solution in a reasonable amount
of time, they are also problem specific which means that a heuristic is specificaly de-
signed to solve a particular problem and cannot be generalized to others. For the
flowshop permutation problem (which we will discuss in the next section) there are
plenty of heuristics like NEH , CDS , Palmer and many more.
The second family of approached methods are the Metaheuristics, a metaheuristic is

1

an iterative process that guides a heuristic by intelligently combining different con-
cepts to explore and exploit the search space , it represents a high-level procedure
that aims to find sufficiently good solutions with a reduced time complexity. Meta-
heuristics are not problem specific and can be generalized to a variety of problems,
and many of them exists in the literature like Genetic Algorithms , Tabu Search ,
Simulated Annealing and many more. However , metaheuristics required fine-tunning
of parameters to get better results, this process was repeated for every instance of a
problem which was a bit overwhelming and time consuming.
For that a new type of approached methods emerged which is the Hyper-heuristics,
Hyper-heuristics are much more general with a high level of abstraction. They are an
automated search methodology that combines simple heuristics or elements of heuris-
tics to solve efficiently an instance or a class of instances of a problem.
Our goal in this article is to propose a new hyper-heuristic based on Q-learning to
solve the flowshop permutation problem, we start first by defining the problem we
are trying to solve , then we dive deep into the details of our method , after that we
show the results of experiments and tests and compare our approach to existing state
of the art heuristics and meta-heuristics.

2 Problem Definition

2.1 Flowshop Permutation

Flowshop permutation is a combinatorial optimization problem that consists of
finding the optimal sequence of n jobs executing sequentially on m machines. The
goal is to minimize the makespan which is the total time required to execute all jobs
on all machines.
This problem follows a set of constraints :

– All jobs are available at t=0
– All machines are not interruptable
– Every machine can process at most one job at a given instant t
– No pre-emption is allowed
– All jobs have the same execution order on all machines

2

Figure 1: Illustration of the flow shop problem

2.2 Objective Function

The makespan (noted Cmax) is the objective function to minimize in the flowshop
permutation problem and it represents the total amount of time required to execute
all jobs on all machines.
Cmax can be calculated using the following formulas :

C1,j = C1,j−1 + dj,π−1(1) (1)

Ci,1 =
∑i

j=1 d1,π−1(j) = Ci−1,1 + d1,π−1(i) (2)

Ci,j = max(Ci−1,j, Ci,j−1) + dj,π−1(i) (3)

Where :

• Ci,j : is the total execution time until the ith job on the jth machine

• π(i) is a permutation function that takes as an argument the identifier or the
number of the job and returns its position in the sequence

3

• dj,i is the execution time of the job i on the machine j

Given n jobs and m machines, Cn,m will be the total makespan that should be
minimized.
By observing the recursive nature of the formulas , it is highly recommended to use
dynamic programming when calculating Cmax in order to accelerate the computational
time.

3 Proposed Method

Our approach consists of a selection perturbative hyper-heuristic with an offline
learning. It first learns the best sequence of execution of the low level heuristics (LLH)
using Q-learning, after that it applies that sequence to the initial solution in attempt
to find the optimal solution.

In this section, we present the global architecture of the hyper-heuristic, then we
show its details, finally we discuss the learning phase.

3.1 Global architecture

Our solution aims to select the best heuristic to apply to the current solution
at each iteration. This is made possible due to the agent who selects the appropriate
heuristic (details provided in the next section).

Figure 2: Global Architecture of the proposed hyper-heuristic

4

Our approach is flexible, we can use as many LLHs we need in the problem’s
domain. For now, we implemented four heuristics, each of them is a local search with
slight variations :

• h1 : It applies a mutation to the current solution by exchanging the order of
two random jobs.

• h2 : It combines the current solution with a randomly generated solution by
applying a crossover between the two of them

• h3 : It similar to H1, the mutation is executed n times.

• h4 : We try to improve the current solution by exploring all its neighbors and
pick the best one among them all.

H1 , H2 and H3 are followed with a local search in order to improve the
obtained solution. The local search method used is the Rajendran and Ziegler (1997)
method (denoted as RZ) as described below :

Algorithm 1 RZ Local search
1: Input : current Solution
2: Output : improved Solution
3: S ← currentSolution
4: while j < numberOfJobs do
5: S′ ← currentSolution
6: remove job jfromS′

7: Test job j in all the possible positions of except for its original one.
8: Insert job j in at the position resulting the lowest total flow-time.
9: if f(S′) ≤ f(currentSolution) then

10: currentSolution← S′

11: end if
12: end while

3.2 Flow chart of the hyperheuristic

We start with an initial solution (in our case, we use Palmer’s heuristic to
generate it, because it is so fast and generate an acceptable solution). Next we train
the agent on the given problem instance, so it will be able to determine the best
sequence of heuristics selection in that particular problem instance. Then, at each
iteration we generate a uniform number between 0 and 1, and if it is less than or equal
to P0 (probability of random heuristic selection) then we select a random heuristic
to apply to the current solution, else we select the best one according to current
state. Finally, we compare the obtained solution with the best one found so far and
we update the latter. We continue this process until a stop condition is met(such as

5

maximum number of iteration is reached or maximum number of iterations without
improvements is reached). the flow chart [figure 2] summarizes the whole process,
also the pseudo-code is detailed [Algorithm 2].

Figure 3: Flow chart of the proposed hyper-heuristic

6

Algorithm 2 Selection perturbative hyper-heuristic with an offline learning
1: Input : instance of the problem, initial solution, Max-Iterations, P0
2: Output : Best jobs order, make-span
3: Train the agent in order to determine the best sequence of heuristics selection.
4: Initialize initial solution using Palmer’s heuristic
5: while i < Max− Iterations do
6: Generate random number p between 0 and 1
7: if p ≤ P0 then
8: Chose next LLH randomly
9: else

10: Chose next LLH from the Q-table : The heuristic to apply is the one that has a maxi-
mum value in the row of the current state in the Q-Table.

11: end if
12: Apply the selected LLH to current solution
13: if Current solution is better than best solution so far then
14: Save current solution as the best solution.
15: end if
16: end while

3.3 Learning phase

In this section, we discuss in details the learning process of the agent. So we
have a problem instance that we want to learn the best heuristic to apply at each
iteration. For doing that, we build an agent who will interact with that environment.
At each step t, it is at a certain state st and chooses an action at to perform. The
environment runs the selected action and returns a reward to the agent, the higher
the reward the better is the action, so an episode can be represented as a sequence of
state-action-reward.

Now we need to define , what are the states and actions, and how to calculate
the reward. Let’s suppose we are at the iteration i, and we applied heuristic h at
the previous iteration i− 1, we want to know which is the best heuristic to apply at
the current iteration. With that said, we can define the set of actions, states and the
reward function as follow :

• States : A state is the last heuristic selected. Thus, the set of states is the set
of available low level heuristics.

• Actions : An action is to select one of available heuristics. Thus,the set of
actions is the set of available low level heuristics.

• A reward : Let f ′ the objective function value of the previous iteration’s solu-
tion S, and f the objective function value after executing the selected heuristic
on S. The the reward r will be calculated as follows :

r(f ′, f) =

{
1, if f’ - f ≥ 0

0, otherwise

7

After defining our elements, the q-learning algorithm starts by initializing a
matrix Q(s,a) of s rows and a lines where s is the number of possible states and a is the
number of possible actions. Note that an element of the matrix represents the reward
gained after choosing an action while being in a specific state. Then, the algorithm
chooses an action to perform according to a ε-greedy rule which is a criterion of
exploration-exploitation, that consists of choosing the action with the highest value
of Q with probability 1 – ε, and choosing a random action with probability ε. Lastly,
the q-value is updated with the following expression :

Q(st, at) = (1− α)Q(st, at) + α[rt + γmaxaQ(st+1, a)]

where st is the current state, at is the action performed in the state st, rt is
the received reward for executing at in st, and st+1 is the new state; γ is a discount
factor (0 ≤ γ < 1), while α (0 < α < 1) is the learning rate.

Algorithm 3 Q-Learning
1: Initialize Q(s,a)
2: for each episode do
3: Initialize s
4: for each step of episode do
5: Choose a according to the ε-greedy rule
6: Perform action a, observe r, s’
7: Update Q(s,a)
8: s← s′

9: end for
10: end for

4 Experimental Results

To test our proposed method we used the taillard benchmarks for the flow
shop sequencing problem, since it allows us to compare our results to other proposed
methods in the litterature. The used instances are presented in the following table:

Instance ta001 ta002 ta003 ta004 ta006 ta007 ta008
Jobs 20 20 20 20 20 20 20

Machines 5 5 5 5 5 5 5
Best makespan 1278 1359 1081 1293 1195 1234 1206

Instance ta009 ta010 ta011 ta012 ta013 ta014 ta015
Jobs 20 20 20 20 20 20 20

Machines 5 5 10 10 10 10 10
Best makespan 1230 1108 1582 1659 1496 1377 1419

8

Instance ta016 ta017 ta018 ta019 ta020 ta021 ta022
Jobs 20 20 20 20 20 20 20

Machines 10 10 10 10 10 20 20
Best makespan 1397 1484 1538 1593 1591 2297 2099

Instance ta023 ta024 ta025 ta026 ta027 ta028 ta029
Jobs 20 20 20 20 20 20 20

Machines 20 20 20 20 20 20 20
Best makespan 2326 2223 2291 2226 2273 2200 2237

Instance ta030 ta031 ta041 ta051 ta061 ta071 ta081
Jobs 20 50 50 50 100 100 100

Machines 20 5 10 20 5 10 20
Best makespan 2178 2724 3025 3875 5493 5770 6286

After presenting the used instances, we will present some experimental results
on the number of episodes used in the training and the number of iterations after
the training, to study the effect of the learning phase on the finale results and on
the execution time. To judge the qualiy of the solution returned, we calculated each
time the gap between it’s makespan and the optimale solution’s makespan from the
taillard’s instances :

GAP =
ObtainedMakespan−BestMakespan

BestMakespan
(4)

4.1 Number Of Episodes Analysis

In this section, we will present the results of the experiments made to test the
effect of the number of episodes of the Q-learning algorithm on the final results. To
do so, we fixed a number of iterations of 300 iterations and varied the number of
episodes. The following graphes represents the results of the experiment on three
instances (ta004, ta006 and ta022):

Number of episodes

9

Number of episodes

Figure 4 - Evolution of the obtained GAP for different numbers of episodes

4.1.1 Discussion

The effect of the augmentation of the number of episodes differ from an instance
to another. As we can see for the instance ta022, better results were found with
bigger number of episodes. But for the ta004 and ta006 instances, we noticed that
for a big range of the number of episodes, the results were a little bit random, which
indicates the non-convergence of the Q-Learning algorithm yet. For example, for the
ta006 instance, we had to go until 2000 episodes to understand the behaviour of the
alorithm. But the common result is that, for the best results, we should pass a bigger
number of episodes.

4.2 Number Of iterations Analysis

In this section, we will test the effect of the learning phase on the evolution of
the results at each moment of the execution of the algorithm. To do so, we compared
the method with the reinforcement learning phase with another one where we choose
randomly the next heuristic to apply. The following graphs represents the evolution
of the best solution found at each iteration of the two methods for 300 iterations
applied to the same three instances (ta004, ta006 and ta022):

10

Number of iterations

Figure 5 - Comparaison of the evolution of the best obtained GAP at each
iteration between random and QL hyper-heuristic

4.2.1 Discussion

As was expected, the effect of the learning phase is obvious since we could get to
better solutions in a smaller number of iterations compared to the random selection
method. In the following section, we will see more the effectivness of our proposed
method compared to the random selection one and to other used approached.

5 Comparative Analysis

In this part, we will test both methods (RHH and QLHH) for different instances of the
problem and compare it to different solutions we implemented : Heuristics (Palmer,
DCS), metaheuristics (Tabu search, NEH).
In order to get clear and generalized results, we will be running our tests on two
types of instances : small instances with 20 jobs (including 30 instances of 5,10, 20
machines) and big instances with 100 jobs (including 10 instances 5,10,20 machines).
The result is the mean of 3 executions for each type of instance.
The following figures present the evolution of the makespan and execution time for
each type of solution.

11

Figure 6 - Evolution of the makespan and execution time for small instances

Figure 7 - GAP comparaison between solution for small instances

Figure 8 - Evolution of the makespan and execution time for big instances

12

We observe that the results obtained by the hyperheuristics are better than other
methods in terms of GAP score in small and big instances. Some instances can
achieve the optimal solution (0% Gap). Heuristics achieve weak results but in a very
short amount of time, we can use them as initial solutions for advanced optimization.
Metaheuristics offer a good compromise between time and GAP for small instances.
For bigger instances we were able to optimize the time of the hyperheuristics by
stopping the algorithm after a number of steps of non amelioration. This maintained
good results while saving some time.

6 Conclusion

In this work, we presented our approach using the hyper-heuristic to solve the
permutation flow shop problem.the hyper-heuristic have been implemented in order
to have a more general method with a higher level of abstraction, and that does not
depend on the parameters or the initial solution feeded. Random hyper heuristic RHH
and Qlearning hyper heuristic QLHH have been used. RHH selects randomly a low
level heuristic, QLHH integrates machine learning through Q learning as a high-level
strategy that will manipulate low-level heuristics.Our method produces good quality
solutions in terms of Gap, The Gap is further reduced compared to metahehristics
by using simple and easy heuristic components,these results are obtained in a similar
time as that of metaheuristics.

References

[1] M. Ben-Daya and M. Al-Fawzan. A tabu search approach for the flow shop
scheduling problem. European Journal of Operational Research, 109(1):88–95,
1998.

[2] Andreas Fink and Stefan Voß. Solving the continuous flow-shop schedul-
ing problem by metaheuristics. European Journal of Operational Research,
151(2):400–414, 2003. Meta-heuristics in combinatorial optimization.

[3] Fernando Garza-Santisteban, Roberto Sánchez-Pámanes, Luis Antonio Puente-
Rodríguez, Ivan Amaya, José Carlos Ortiz-Bayliss, Santiago Conant-Pablos, and
Hugo Terashima-Marín. A simulated annealing hyper-heuristic for job shop
scheduling problems. In 2019 IEEE Congress on Evolutionary Computation
(CEC), pages 57–64, 2019.

[4] Eva Vallada, Rubén Ruiz, and Jose M. Framinan. New hard benchmark for
flowshop scheduling problems minimising makespan. European Journal of Oper-
ational Research, 240(3):666–677, 2015.

13

[5] Eric Taillard. Benchmarks for basic scheduling problems. european journal of
operational research, 64(2):278–285, 1993.

[6] Edmund K Burke, Graham Kendall, Mustafa Mısır, and Ender Özcan. Monte
carlo hyper-heuristics for examination timetabling. Annals of Operations Re-
search, 196(1):73–90, 2012.

[7] Abdellah Salhi and José Antonio Vázquez Rodríguez. Tailoring hyper-heuristics
to specific instances of a scheduling problem using affinity and competence func-
tions. Memetic Computing, 6(2):77–84, 2014.

[8] İlker Gölcük and Fehmi Burcin Ozsoydan. Q-learning and hyper-heuristic based
algorithm recommendation for changing environments. Engineering Applications
of Artificial Intelligence, 102:104284, 2021.

[9] Shin Siang Choong, Li-Pei Wong, and Chee Peng Lim. Automatic design
of hyper-heuristic based on reinforcement learning. Information Sciences,
436:89–107, 2018.

[10] Xingye Dong, Houkuan Huang, and Ping Chen. An iterated local search algo-
rithm for the permutation flowshop problem with total flowtime criterion. Com-
puters & Operations Research, 36(5):1664–1669, 2009.

14

